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a b s t r a c t

Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells.
Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane
segments (S1–S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore
domain with the selectivity filter. Prokaryotic Navs resemble these characteristics, but are truly tetra-
meric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free syn-
thesis has not been demonstrated. Here we report the cell-free expression and purification of a
prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional
channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electro-
physiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational
modifications, and special solubilization schemes. This enables next-generation biophysical experiments
to study the principle of sodium ion selectivity and transport in sodium channels.

� 2015 Published by Elsevier Inc.
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Introduction

Voltage-gated sodium channels (Navs)2 are membrane proteins
from the superfamily of voltage-gated ion channels, closely related
to voltage-gated potassium channels and voltage-gated calcium
channels [1]. Navs are present in all excitable cells, where they par-
ticipate in the propagation of action potentials by changing the Na+

permeability of the cell membrane. Most voltage-gated ion chan-
nels comprise of similar building blocks and are mainly alpha-heli-
cal. Navs comprise six transmembrane segments (S1–S6), where
S1–S4 form the voltage-sensing domain and S5 and S6 create the
pore domain. In bacteria, four of these subunits arrange around a
central pore to form a functional channel. In higher organisms,
all four subunits are assembled from a single polypeptide chain,
which may associate with auxiliary subunits [2].

Eukaryotic sodium channels were discovered first and have
been the subject to extensive research for many decades [3].
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However, the discovery of a prokaryotic bacterial sodium channel
in 2001 [4] was a prerequisite for solving the proteins’ three
dimensional crystal structure [5], mainly because it enabled pro-
duction of larger amounts of channel proteins. Bacterial Navs have
20–25% identity with human Navs and are expected to have a simi-
lar fold as they have nearly identical hydrophobicity profiles and
predicted topologies in each of the pseudo-repeated eukaryotic
domains [6]. Despite the available structural information, the
mechanisms of molecular ion transport and ion selectivity are still
not completely understood. X-ray crystallography catches high-
resolution structures of stationary states, but lacks dynamic infor-
mation. In principle, molecular dynamics simulations can be used
to produce dynamical models. However, for potassium channels
[7], such simulations have let to radically different proposals for
mechanisms for ion transport [8,9]. This emphasizes the need for
experimental validation. As we point out below, suitable experi-
ments are today becoming possible. They may require sophisti-
cated and site-selective modifications of the protein, which is
asking for efficient production of Navs with cell-free (in vitro)
synthesis.

In cell-free expression, proteins are expressed from exogenous
template DNA added to the transcription and translation enzymes
extracted from a cell lysate. This in vitro synthesis is becoming
increasingly popular, particularly because it is possible to produce
proteins which aggregate, or proteins which are toxic to host cells
[10–14]. Today, typical yields of 0.3 mg to several milligrams of
http://
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protein per mL reaction mixture can be achieved in batch or in con-
tinuous mode, respectively, and popular reaction mixtures are
extracted from Escherichia coli or wheat germs [14–16]. As cell-free
expression gives direct access to the nascent polypeptide, it facili-
tates co-translational solubilization of membrane proteins in a
wide range of detergents, lipids and nanodiscs [10,17]. Indeed,
functional membrane proteins [10–13] including ion channels
such as connexins [18], nicotinic acetylcholine receptors [19], dro-
sophila olfactory receptors [20] and potassium channels can be
produced by in vitro synthesis [17,21,22]. Also, eukaryotic sodium
channels protein were synthesized in vitro [23]. Most of these
examples were produced in cell extracts that yield microgram
quantities of proteins, which is sufficient for electrophysiological
studies, but not for spectroscopic and crystallographic investiga-
tions [18,19,21–23]. Isotope-labelled proteins are easily available
as the amino acids are added to the reaction mixture as required
[24].

In-vitro synthesis of ion channels is useful, because it may pave
the way for the investigation of the molecular details of ion con-
ductance in channel proteins. It has been demonstrated that
in vitro synthesis enables time-saving direct reconstitution into
oocytes [17]. Room temperature spectroscopy methods, such as
NMR and vibrational spectroscopy, can in principle be used to
study ion channels in native environments. Two-dimensional
infrared spectroscopy is particularly interesting, because it can be
used to characterize biological processes involving protein
conformational change, e.g. transport or charge transfer with
picosecond time resolution [25,26]. A specific infrared experiment
to study the occupancy in selectivity filters of ion channels has
been suggested [27]. Nonetheless, it is usually problematic to
assign vibrational spectral signatures to specific sites in proteins,
except for when these sites are labelled with isotopes or specific
chemical groups [27–29]. In-vitro synthesis of protein makes pos-
sible site-directed labelling with specific amino acids using
amber-stop codon technology [30,31]. To realize this new genera-
tion of spectroscopic experiments, reliable in vitro production of
milligram quantities of ion channels is a prerequisite.

Here we report the production of a bacterial pore-only sodium
channel from Silicibacter pomeroyi (NavSp1p) [32]. Designed and
explored by the Minor group, the pore domain folds independently
of the voltage-sensing domain into a functional channel protein,
which displays selectivity for sodium over potassium ions. When
produced in E. coli, it is more stable and expresses at higher levels
than the complete channel [32]. We show here that cell-free pro-
duction of a few milligrams of NavSp1p is possible, that the protein
is folded correctly, and that a functional sodium channel is produced.
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Material and methods

Extract cultivation, preparation

S12 extract was prepared from BL21 (DE3):RFI-CBD3 [31] as
described in [33]. Briefly, cells were grown in a 20 L fermentor
(Braun Biostat C) at 37 �C in 2xYPTG medium supplemented with
choline chloride (Fluka 28.6 mg/L), nicotinic acid (Acros, 25.1 mg/
L), p-aminobenzoic acid (Aldrich, 20.0 mg/L), pantothenic acid
calcium salt (Fluka, 9.4 mg/L), pyridoxal-5-phosphate (1.8 mg/L),
(�)-riboflavin (3.9 mg/L), thiamine hydrochloride (USB
Corporation, 17.7 mg/L), betaine hydrochloride (Calbiochem,
33.1 mg/L), D-biotin (MP Biomedicals, 0.1 mg/L), cyanocobalamin
(Fluka, 0.01 mg/L), folinic acid calcium salt hydrate (Sigma,
0.075 mg/L), iron (III) chloride hexahydrate (Scharlau Chemie S.A.,
20.0 mg/L), sodium molybdate dehydrate (Acros, 3.5 mg/L), boric
acid (1.2 mg/L), cobalt sulphate heptahydrate (4 mg/L), copper
sulphate pentahydrate (Merck KGaA, 3.4 mg/L), manganese
Please cite this article in press as: G. Kovácsová et al., Cell-free expression of
dx.doi.org/10.1016/j.pep.2015.03.002
sulphate hydrate (Merck KGaA, 1.9 mg/L), zinc sulphate heptahy-
drate (Scharlau Chemie S.A., 3.4 mg/L), and amino acids (Asp
(28.5 mg/L), Gly (49.1 mg/L), His (9.35 mg/L), Ile (26.2 mg/L), Leu
(29.9 mg/L), Lys (31.4 mg/L), Met (14.9 mg/L), Phe (15.3 mg/L), Pro
(31.8 mg/L), Thr (37.7 mg/L), Trp (102.1 mg/L), Tyr (37.7 mg/L),
Val (117.1 mg/L)). At OD600 �4.5 temperature was decreased to
10 �C by passing the cell suspension through a metal coil immersed
in ice water, cells were harvested, washed with extraction buffer
(10 mM Tris–acetate (pH 8.2), 14 mM Mg(OAc)2, 60 mM K(OAc),
cOmplete EDTA-free (Roche)), and finally resuspended in 10 mL
extraction buffer/8 g of wet cells. The cells were lysed by a French
press (two passages, 24,000 psi, ThermoFisher), centrifuged at
12,100g (10 min, 4 �C), the supernatant was decanted into fresh
tubes and incubated for 2 h at a shaking incubator (30 �C,
150 rpm). We removed the release factor 1 protein from the cell
extract. This is important for potential subsequent site-directed
labelling steps with amber stop codons [30,34]. The S12 extract
was passed over chitin resin (New England Biolabs) directly after
the incubation and removal was confirmed by Western blotting.
After addition of 1 mM DTT the S12 extract was dialyzed twice
against extraction buffersupplemented with b-mercaptoethanol
(1 mL/L), flash frozen, and stored at�80 �C.

Cell-free protein expression was performed in batch mode as
described by [33]. Briefly, plasmid 0.01 lg/lL DNA, 14–20 mM
Mg(OAc)2, all 20 amino acids (1 mM each, besides Gln (4 mM)
and Ser (2 mM)), 27.4 mM NH4OH, 212 mMD-Glu, 230 mM KOH,
52.5 mM Hepes-KOH (pH 7.0), 1.1 mM ATP, 800 lM GTP, 800 lM
CTP, 800 lM UTP, 640 lM cAMP, 68 lM folinic acid (BioXtra),
1.7 mM DTT, 51.6 mM creatine phosphate (Roche), 4.4 mML-(�)-
malic acid (Fluka), 1.5 mM succinate (SAFC), 1.9 mM a-ketoglutaric
acid (Fluka), 175 lg/mL tRNA (Roche), 8 U/mL RiboLock
RNase Inhibitor (Thermofischer), 1xcOmplete EDTA-free (Roche),
50 lg/mL T7RNA polymerase (prepared according to [35,36]),
125 lg/mL creatine kinase (Roche), 31% (v/v) S12, and detergents
were mixed. Brij�-58 (polyoxyethylene (20) cetyl ether) and
Brij�-78 (polyoxyethylene (18) octadecyl ether) (Sigma) were used
at a final concentration of 10 times excess of the critical
micelle concentration (CMC), 0.8 mM and 0.46 mM, respectively.
DDM (n-dodecyl-b-D-maltoside) and DM (n-decyl-b-D-maltoside)
(Anagrade Affymetrix) were used at 3 � CMC, 0.6 mM and
5.4 mM, respectively. Mixture was incubated for two hours at
30 �C and 800 rpm. For every batch of S12 the optimal Mg2+ was
determined by GFPcyc3 expression. GFPcyc3 fluorescence was
measured with a FluoStar plate reader (BMG Labtech, 390 nm
(excitation), 520 nm (emission)).

To verify protein expression, Western blotting was performed
following the manual for XCell II™ Blot Module and ONE-HOUR
Western™ Basic Kit (Mouse) (GenScript) using Anti-His Antibody
(GE Healthcare). Chemiluminescence was detected using a
Fujifilm Las-1000 Luminescent Image Analyzer Chemi Fuji together
with its software.

Overexpression of NavSp1p in E. coli cells

NavSp1p cloned into pHM3C-LIC, a vector containing a N-term-
inal hexa-His tag, a maltose-binding protein and a HRV 3C cleavage
site was a kind gift from Daniel Minor [32]. The construct was
transformed into Escherichia coli BL21 (DE3) and expression was
performed as described [32].

Purification of NavSp1p from cell-free synthesis and expression in
E. coli

We adapted a purification scheme from Shaya et al., 2011. After
completed cell-free synthesis, the reaction mixture was centrifuged
(16,000g, 20 min, 4 �C) and the supernatant was loaded onto a
a functional pore-only sodium channel, Protein Expr. Purif. (2015), http://
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gravity flow Ni–NTA agarose column (Qiagen) equilibrated with
buffer A (20 mM Tris pH 8.0, 200 mM NaCl, 8% (vol/vol) glycerol,
2.7 mM DM). The column was washed with 7 column volumes of
buffer A with 20 mM imidazole and eluted by 3 column volumes
of buffer A with 300 mM imidazole. Large amounts, as e.g. channel
protein produced inE. coli were loaded onto a His-Trap HP column
using an Äcta system (GE Healthcare). The sample was desalted
using buffer A either by dialysis (MWCO 12–14 kDa) or loaded onto
a HiPrep 26/10 Desalting Column (GE Healthcare). The affinity tag
and the maltose binding protein were cleaved by a His-labeled in-
house HRV 3C protease (see below) at a ratio protein: pro-
tease = 1 mg: 0.28 mg at 8 �C overnight with gentle agitation. The
protease was removed by a second Ni–NTA column which
additionally removes traces of uncleaved protein and the His-
tagged maltose binding protein tag. The last purification step was
a size exclusion chromatography step (Superdex Increase 200 GL
(GE Healthcare), with buffer C (20 mM Hepes pH 8.0, 200 mM
NaCl, and 2.7 mM DM)). Protein purity was evaluated by SDS–
PAGE stained with SimpleBlue™ SafeStain (life technologies) and
the protein concentration was determined by absorbance at
280 nm using NanoDrop 1000 (Thermo Scientific), where the
extinction coefficient for the uncleaved and cleaved protein was
90,300 M�1 cm�1 and 23,500 M�1 cm�1, respectively.

HRV 3C protease expression and purification

HRV 3C in a pET28 expression vector was obtained from Daniel
Minor [32]. 10 mL 2YT (pH 7) containing kanamycin (100 lg/mL)
was inoculated with a glycerol stock of pET28 inE. coli BL21 Star
and grown overnight (220 rpm, 37 �C). Two liter cultures were
inoculated with 6 mL of preculture and grown (180 rpm, 37 �C)
to an O.D600 of 0.6–0.8. Then the temperature was reduced to
22 �C and after 15 min, expression was induced with
0.4 mM IPTG (Affymetrix). After 19 h cells were harvested by cen-
trifugation (6000g, 20 min, 4 �C). Pelleted cells were resuspended
in 50 mL lysis buffer (50 mM Tris–HCl pH 8.0, 300 mM NaCl,
20 mM imidazole, 10% glycerol, 1 mg lysozyme from chicken egg
white, Sigma and 1 mM PMSF) and disrupted using French Press,
two passages at 24,000 psi. Cell lysate was separated from unbro-
ken cells and cell debris by ultracentrifugation (42,000g, 1 h, 4 �C).
The supernatant containing the octa-histidine tagged 3C protease
was loaded onto a 5 mL HisTrap™ HP column (GE Healthcare)
and equilibrated with chelating buffer (50 mM Tris–HCl pH 8.0,
300 mM NaCl, 20 mM imidazole, 10% glycerol). The column was
washed with chelating buffer containing 46 mM imidazole and
the bound protein was eluted by step application of elution buffer
(50 mM Tris–HCl pH 8.0, 300 mM NaCl, 150 mM imidazole, 10%
glycerol). The fractions containing the protein were collected and
dialyzed overnight against 2 L dialysis buffer (50 mM Tris–HCl
pH 8.0, 150 mM NaCl, 10 mM EDTA, 20% glycerol, 5 mM DTT)
(MWCO 12–14 kDa, 8 �C). The concentration was measured photo-
metrically using an extinction coefficient of 5960 M�1 cm�1 at
280 nm and M.W. was 21.282 kDa. Aliquots were flash frozen
and stored at �20 �C.

IR spectroscopy

IR spectrum of the liquid sample was obtained with Agilent
Cary 630 FTIR spectrometer with Diamond ATR Accessory. Buffer
absorbance was recorded, scaled, and subtracted from sample
spectrum as to minimize the water absorbance.

Functional characterization of reconstituted NavSp1p

Purified NavSp1p was incorporated into giant unilamellar vesi-
cles (GUVs) using procedures described previously [32,37,38]. First,
Please cite this article in press as: G. Kovácsová et al., Cell-free expression of
dx.doi.org/10.1016/j.pep.2015.03.002
GUVs were produced by electroformation using 10 mM 1,2, diphy-
tanoyl-sn-glycero-3-phosphocholine and 1 mM cholesterol dis-
solved in trichloromethane. No phosphatidyl glycerol,
phosphatidyl serine nor phosphatidylinositol were added as the
lipid sensitivity of pore-only NavSp1p seems to be drastically
reduced when compared to full length protein [39].
Approximately 20 lL of lipid solution was placed on the Vesicle
Prep Pro (Nanion Technologies) ITO glass surface and air-dried.
The dry lipid film was rehydrated using 250 lL 1 M sorbitol.
GUVs were formed by electroswelling under the influence of an
alternating electrical field for 2 h. GUVs were collected and incu-
bated with protein suspension containing 0.5 lg/mL NavSp1p in
20 mM Hepes pH 8.0, 200 mM NaCl, and 2 mM DM for 15 min.
Excess detergent was adsorbed by addition of 40 mg mL�1 poly-
styrene beads (BioBeads SM2 Adsorbant, Biorad Laboratories) to
the samples for 4 h. After incubation, BioBeads were separated
from the GUVs by centrifugation (1000g, 10 min) and removed.
The residual amount of DM after adsorption was not estimated.
Empty control vesicles were prepared in a similar manner omitting
the protein addition step. Electrophysiology recordings were made
immediately following protein reconstitution.

Electrophysiology

All lipid bilayer experiments were performed using a planar
patch clamp system (Port-a-Patch, Nanion Technologies GmbH),
using borosilicate glass chip with an aperture diameter of approxi-
mately 1 lm. Channel activity was recorded in symmetrical condi-
tion comprised of 10 mM Na-Hepes, 200 mM NaCl, pH 7 (adjusted
with NaOH). To determine the permeability of Na+ and K+, the
reversal potential was measured in asymmetric conditions where
the internal solution contained 10 mM Na-Hepes, 200 mM NaCl,
pH 7 (adjusted with NaOH) and the external solution contained
10 mM Hepes, 110 mM KCl, pH 7 (adjusted with KOH). Data were
filtered at 3 kHz (Bessel filter, HEKA amplifier, Lambrecht/Pfalz,
Germany) digitized at a sampling rate of 50 kHz and analyzed with
Clampfit (Axon Instruments). Bilayer formation process was com-
puter controlled by PatchControl software (Nanion). The
permeability ratio was estimated as in Ref. [32,40], according to

equation PNa
PK
¼ asi exp Erev F

RTð Þ½ � exp Erev F
RTð Þþ1½ �

4ase
. R, T, F, and Erev are the gas con-

stant, absolute temperature, Faraday constant, and the reversal
potential, respectively. Activity coefficients for Na+ and K+ were
estimated as follows: as ¼ cs½Xs�, where activity, as, is the effective
concentration of an ion in solution, s is related to the nominal con-
centration [Xs] by the activity coefficient, cs, cs was calculated from

the Debye–Hückel equation: logcs
¼�0:51�zs

ffiffiffilp

1þ3:8as
ffiffiffilp where l is the ionic

strength of the solution, zs is the charge on the ion, and as is the
effective diameter of the hydrated ion in nanometers.
Results and discussion

Based on the observation that membrane proteins can be suc-
cessfully expressed in cell-free systems [10] and that E. coli is a
suitable host for expressing the bacterial tetrameric pore-only
NavSp1p fused to a maltose-binding protein and a hexa-His tag
[32], we tested the expression of NavSp1p in a cell-free system
derived from a bacterial extract S12 from E. coli. As NavSp1p is a
membrane protein, we first undertook a detergent screen to effec-
tively solubilize NavSp1p in CPFE. Based on literature research [41],
we tried four non-polar detergents Brij�-58, Brij�-78, DDM and
DM. The expression of NavSp1p was verified by immunoblotting
in the crude expression mixture using anti-His antibodies
(Fig. 1). We observed an equally strong signal both in the total
reaction (T) and in the supernatant (S) indicating that the protein
a functional pore-only sodium channel, Protein Expr. Purif. (2015), http://
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Fig. 2. Purification of NavSp1p. (A) Size-exclusion chromatogram, full and dashed
line mark the absorbance at 280 nm of the NavSp1p obtained from cell-free
expression and E. coli cells respectively. Asterisk indicates the collected peak
(elution volume of the tetrameric NavSp1p (67.3 kDa) is 11.7–13.2 mL and 11.5–
13.5 mL for cell-free expression andE. coli sample, respectively). We note that the
large void volume in the sample expressed in vitro is likely due to excess DNA in the
reaction mixture. (B, C) SDS-PAGE analyses of collected peaks stained with
Coomassie. The asterisk marks the band for monomeric NavSp1p at 15.9 kDa from
cell-free expression (B) and from E. coli cells (C).

Fig. 3. Corrected FTIR spectra of NavSp1p. The amide I (1600–1700 cm�1) and
amide II (�1550 cm�1) vibrations of the polypeptide backbones are marked with
one and two asterisks respectively.

Fig. 1. Western blot analysis of the solubilization NavSp1p expressed cell-free with
four different detergents (Brij-78, DM, Brij-58, DDM). The blot is digitally overlaid
with a picture of the same nitrocellulose membrane stained with Ponceau S (‘S’
denotes ‘supernatant’, ‘T’ denotes ‘total reaction’). The frame marks the expected
size of the fusion protein NavSp1p 62.1 kDa.
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was not only expressed, but also effectively solubilized in all deter-
gents. Next, we optimized the incubation time and temperature.
Changing the initial incubation time from 2 h to 4 h and overnight,
did not result in a significant change in the yield. A temperature
drop from 30 �C to 19 �C inhibited expression in the environment
of DM and DDM and but did not change the expression in Brij-78
and Brij-58. We chose an incubation temperature and time of
30 �C and 2 h, respectively, and performed expression in DM. The
protein was purified using affinity and size exclusion chro-
matography[32]. Optimization of the amount of protease for cleav-
age of the maltose binding domain at 8 �C yielded an optimized
ratio of 1 mg: 0.28 mg (protein: protease).

We also expressed NavSp1p in in vivo in E. coli as described [32].
The size-exclusion chromatogram shows that NavSp1p from both
expression systems has an identical elution volume (Fig. 2A).
This is indicative of elution as a tetramer (67.3 kDa). SDS–PAGE
analyses under denaturing conditions (Fig. 2B and C) showed that
purification yields a pure protein in both cases and we observed a
monomeric NavSp1p with the size of 15.9 kDa. The total yield was
20 lg purified protein per mL of cell-free reaction, which is suffi-
cient for production of milligram amounts. For comparison, the
yields of purified cell-free expressed human voltage-dependent
anion channel-1 and bacteriorhodopsin were reported as 200–
300 lg/ mL and 24 lg/ mL, respectively[11,13], both produced in
batch mode format using E. coli extract.

To confirm that the ion channel was folded correctly, we
recorded an FTIR spectrum (Fig. 3). The vibrational frequency of
the amide I band (1656 cm�1), and the peak shape of the amide I
and II bands support the notion that the protein is alpha-helical
[42].

Electrophysiological characterization of the NavSp1p, produced
in vitro, reconstituted in planar lipid bilayers was analyzed on the
single channel level. The single channel recordings showed that the
Fig. 4. Functional characterization of NavSp1p (A) NavSp1p reconstituted in planar
lipid bilayer recorded in an asymmetric buffer solution, 110 mM KCl,10 mM HEPES,
pH 7 and 200 mM NaCl, 10 mM HEPES, pH 7 external and internal solution
respectively, at different voltages as indicated. The closed channel current level is
indicated. (B) Single channel IV relationships for NavSp1p channels in an
asymmetric buffer solution, 110 mM KCl,10 mM HEPES, pH 7 [K]o and 200 mM
NaCl, 10 mM HEPES, pH7 [Na]i external and internal solution, respectively.
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protein is a functional ion channel with a selectivity for sodium
over potassium ions. We measured the conductance levels while
varying the holding potential between �100 mV and+100 mV
(Fig. 4A). The conductance of NavSp1 was 32.5 ± 2.8 pS under
symmetrical condition (200 mM NaCl) which is in a good agree-
ment with the previously reported value for the NavSp1p
expressed in E. coli [32]. To further investigate the NavSp1p, we
measured its selectivity for sodium over potassium by measuring
the reversal potential in a set of asymmetric ion conditions. The
current – voltage relationship under asymmetric condition
(110 mM KCl extracellular/200 mM NaCl intracellular) showed
that NavSp1p has a preference for ions of Na+:K+ = 1:0.27
(Fig. 4B). This indicates that the expressed sodium channel is
indeed functional and that it is selective for sodium over potassium
ions.

In conclusion, we established a stable and functional cell-free
expression system for NavSp1p. The yield (0.02 mg purified pro-
tein/mL extract) is comparable to other membrane proteins
[10,11,13]. The ion channel is a homo tetramer with functional
characteristic resembling the protein expressed in E. coli [32].
This adds another functional membrane protein to the list of tar-
gets that can be produced by in vitro expression [10] and also to
the list of in vitro expressed sodium channels, coming two decades
after expression of a mechanosensitive renal Nav [43] as the first
from the family of bacterial voltage-gated Navs. The expression
system can be adopted for efficient site-specific incorporation of
isotope labeled amino acid, enabling the bio-spectroscopic
investigation of this ion channel protein.
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